Can I hold 2 batches of dlnetwork gradients and update network parameters in 1 operation?
Due to the limitation of GPU memory, a deeplearning network can’t learn like 16 samples in a batch.
So can I compute the gradients for a batch of 8 samples, and update the network gradients with 2 batches’ gradients?
If I compute the gradients of a deeplearning network by
[gradients,state,loss] = dlfeval(@modelGradient,dlNet,xTrain,yTrain);
So after 2 batches, I get gradients1, gradients2, state1, state2, loss1, and loss2.
For my instant opinion, I think the total gradients should be the mean of gradients1 and gradients2.
But how can I compute the state values? Is it also the mean of state1 and state2?
ANSWER
Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.
Yes, absolutely, just sum the gradients until your batch size is the size you want, then update the model. The principle is exactly the same is training a model on multiple GPUs (or CPUs).
The State update depends on the State. This example shows you how to aggregate batch norm state. The function aggregateState is of interest here. Instead of using gplus you would just be aggregating over your ‘sub’-iterations.
function state = aggregateState(state,factor) numrows = size(state,1);
for j = 1:numrows
isBatchNormalizationState = state.Parameter(j) =="TrainedMean"...
&& state.Parameter(j+1) =="TrainedVariance"...
&& state.Layer(j) == state.Layer(j+1);
if isBatchNormalizationState
meanVal = state.Value{j};
varVal = state.Value{j+1};
SEE COMPLETE ANSWER CLICK THE LINK