tlabhow to fix this issue through running the program?

Technical Source
2 min readJul 7, 2021

--

i am using Matlab for medical image classification and i get this issue:

note: i used pre-trained network (alexnet) with .dicom files dataset.

first i prepare my design network

second, i run my code.

>> deepNetworkDesigner
>> SHIVANCLASSIFY
net = SeriesNetwork with properties: Layers: [25×1 nnet.cnn.layer.Layer]
InputNames: {'data'}
OutputNames: {'output'}
Error using trainNetwork (line 170)
The training images are of size 227x227x1 but the input layer expects images of size 227x227x3.
Error in SHIVANCLASSIFY (line 36)
net = trainNetwork(augimdsTrain,layers_1,options)
net=alexnet
imds = imageDatastore('lung dataset-Labeled', ...
'IncludeSubfolders',true, 'LabelSource','foldernames', ... % this for labeling by folder names
'FileExtensions','.dcm','ReadFcn',@readDicomDatastoreImage); % this a function
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7);augmenter = imageDataAugmenter( ...
'RandRotation',[-20,20], ...
'RandXReflection',1,...
'RandYReflection',1,...
'RandXTranslation',[-3 3], ...
'RandYTranslation',[-3 3]);
%augimdsTrain = augmentedImageDatastore([224 224],imdsTrain,'DataAugmentation',augmenter);
%augimdsValidation = augmentedImageDatastore([224 224],imdsValidation,'DataAugmentation',augmenter);
augimdsTrain = augmentedImageDatastore([227 227],imdsTrain);
augimdsValidation = augmentedImageDatastore([227 227],imdsValidation);
options = trainingOptions('rmsprop', ...
'MiniBatchSize',10, ...
'MaxEpochs',20, ...
'InitialLearnRate',1e-3, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',3, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(augimdsTrain,layers_1,options)
[YPred, probs] = classify(net,augimdsValidation);
accuracy = mean(YPred ==imdsValidation.Labels)
figure
cm=confusionchart (imdsValidation.Labels, YPred);

ANSWER

Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

you cannot use pre-trained network unless you adjust it to your data

1. for alexnet, this pre-trained network takes 227x227x3 because it deals with RGB images

2. and that also applies to the first ConveNet which takes 3 channels because its kernels have 3 channels, in which you also have to update

3. you must update the last three classification layers to classify based on your classes

i also think that you are trying to resize your lung dataset to 227x227 in which you may lose some of its quality

this code should work for you, and if it’s not clear i can clarify it for you

clear all; close all; clc;imds = imageDatastore('lung dataset-Labeled', ...
'IncludeSubfolders',true, 'LabelSource','foldernames', ... % this for labeling by folder names
'FileExtensions','.dcm','ReadFcn',@readDicomDatastoreImage); % this a function
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7);
net = alexnet(); % analyzeNetwork(lgraph)
numClasses = numel(categories(imdsTrain.Labels)); % number of classes = number of folders
imageSize = [227 227]; % you can use here the original dataset size
global GinputSize
GinputSize = imageSize;

SEE COMPLETE ANSWER CLICK THE LINK

--

--

Technical Source
Technical Source

Written by Technical Source

Simple! That is me, a simple person. I am passionate about knowledge and reading. That’s why I have decided to write and share a bit of my life and thoughts to.

Responses (1)