How to plot multiple graphs in one figure ?

Technical Source
6 min readAug 30, 2024

--

I have two codes. Each code has four graphs. I want to plot two graphs in one figure. For example: Dead nodes vs Round graph of two should be in one figure. In the same way other graphs also. I tried hold on function but still not getting. How to merge the two codes in order to get the graphs ?

Code 1:

clc
clear all;
close all;
xm=100;
ym=100;
x=0;
y=0;
sink.x=0.5*xm; %location of sink on x-axis
sink.y=0.9*ym; %location of sink on y-axis
n=100 %nodes
P=0.1 ; %probability of cluster heads
Eo=0.5; %initial energy
ETX=50*0.000000001; %tx energy
ERX=50*0.000000001; %rx energy
Efs=10*0.000000000001; %free space loss
Emp=0.0013*0.000000000001; %multi path loss
%Data Aggregation Energy
EDA=5*0.000000001; %compression energy
a=1; %fraction of energy enhancment of advance nodes
rmax=3000 %maximum number of rounds
do=sqrt(Efs/Emp); %distance do is measured
Et=0; %variable just use below
A=0;
for i=1:1:n
S(i).xd=rand(1,1)*xm; %generates a random no. use to randomly distibutes nodes on x axis
XR(i)=S(i).xd;
S(i).yd=rand(1,1)*ym; %generates a random no. use to randomly distibutes nodes on y axis
YR(i)=S(i).yd;
S(i).G=0; %node is elegible to become cluster head
talha=rand*a;
S(i).E=Eo*(1+talha);
E(i)= S(i).E;
A=A+talha;
Et=Et+E(i); %estimating total energy of the network
%initially there are no cluster heads only nodes
S(i).type='N';
figure(10)
plot(S(i).xd,S(i).yd,'bo');
text(S(i).xd+1,S(i).yd-0.5,num2str(i));
title 'Node Deployment';
xlabel 'X-Coordinate(m)';
ylabel 'Y-Coordinate(m)';
hold on;
end
d1=0.765*xm/2;  %distance between cluster head and base station
K=sqrt(0.5*n*do/pi)*xm/d1^2; %optimal no. of cluster heads
d2=xm/sqrt(2*pi*K); %distance between cluster members and cluster head
Er=4000*(2*n*ETX+n*EDA+K*Emp*d1^4+n*Efs*d2^2); %energy desipated in a round
S(n+1).xd=sink.x; %sink is a n+1 node, x-axis postion of a node
S(n+1).yd=sink.y; %sink is a n+1 node, y-axis postion of a node
countCHs=0; %variable, counts the cluster head
cluster=1; %cluster is initialized as 1
flag_first_dead=0; %flag tells the first node dead
flag_tenth_dead=0; %flag tells the 10th node dead
flag_all_dead=0; %flag tells all nodes dead
dead=0; %dead nodes count initialized to 0
first_dead=0;
tenth_dead=0;
all_dead=0;
allive=n;
%counter for bit transmitted to Bases Station and to Cluster Heads
packets_TO_BS=0;
packets_TO_CH=0;
for r=0:1:rmax
r
if(mod(r, round(1/P) )==0)
for i=1:1:n
S(i).G=0;
S(i).cl=0;
end
end
Ea=Et*(1-r/rmax)/n;
dead=0;
for i=1:1:n

if (S(i).E<=0)
dead=dead+1;
if (dead==1)
if(flag_first_dead==0)
first_dead=r;
flag_first_dead=1;
end
end
if(dead==0.1*n)
if(flag_tenth_dead==0)
tenth_dead=r;
flag_tenth_dead=1;
end
end
if(dead==n)
if(flag_all_dead==0)
all_dead=r;
flag_all_dead=1;
end
end
end
if S(i).E>0
S(i).type='N';
end
end
STATISTICS.DEAD(r+1)=dead;
STATISTICS.ALLIVE(r+1)=allive-dead;
countCHs=0;
cluster=1;
for i=1:1:n
if Ea>0
p(i)=P*n*(1+a)*E(i)/(n+A)*(Ea);
%p(i)=P*n*S(i).E*E(i)/(Et*Ea);
if(S(i).E>0)
temp_rand=rand;
if ( (S(i).G)<=0)
if(temp_rand<= (p(i)/(1-p(i)*mod(r,round(1/p(i))))))
countCHs=countCHs+1;
packets_TO_BS=packets_TO_BS+1;
PACKETS_TO_BS(r+1)=packets_TO_BS;
S(i).type='C';
S(i).G=round(1/p(i))-1;
C(cluster).xd=S(i).xd;
C(cluster).yd=S(i).yd;
distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 );
C(cluster).distance=distance;
C(cluster).id=i;
X(cluster)=S(i).xd;
Y(cluster)=S(i).yd;
cluster=cluster+1;
distance;
if (distance>do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance ));
end
if (distance<=do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Efs*4000*( distance * distance ));
end
end

end

end
end
end
STATISTICS.COUNTCHS(r+1)=countCHs;
for i=1:1:n
if ( S(i).type=='N' && S(i).E>0 )
if(cluster-1>=1)
min_dis=sqrt( (S(i).xd-S(n+1).xd)^2 + (S(i).yd-S(n+1).yd)^2 );
min_dis_cluster=0;
for c=1:1:cluster-1
temp=min(min_dis,sqrt( (S(i).xd-C(c).xd)^2 + (S(i).yd-C(c).yd)^2 ) );
if ( tempdo)
S(i).E=S(i).E- ( ETX*(4000) + Emp*4000*( min_dis * min_dis * min_dis * min_dis));
end
if (min_dis<=do)
S(i).E=S(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis));
end

S(C(min_dis_cluster).id).E = S(C(min_dis_cluster).id).E- ( (ERX + EDA)*4000 );
packets_TO_CH=packets_TO_CH+1;
else
min_dis;
if (min_dis>do)
S(i).E=S(i).E- ( ETX*(4000) + Emp*4000*( min_dis * min_dis * min_dis * min_dis));
end
if (min_dis<=do)
S(i).E=S(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis));
end
packets_TO_BS=packets_TO_BS+1;

end
S(i).min_dis=min_dis;
S(i).min_dis_cluster=min_dis_cluster;
else
min_dis=sqrt( (S(i).xd-S(n+1).xd)^2 + (S(i).yd-S(n+1).yd)^2 );
if (min_dis>do)
S(i).E=S(i).E- ( ETX*(4000) + Emp*4000*( min_dis * min_dis * min_dis * min_dis));
end
if (min_dis<=do)
S(i).E=S(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis));
end
packets_TO_BS=packets_TO_BS+1;
end
end
end

Code 2:

clear;
close all;
%%%%%%%%%%%%%%%%%%%%%%%%%%%Modified LEACH%%%%%%%%%%%%%%%%%%%%%%
xm=100; %diameters of sensor network
ym=100;
sink.x=0.5*xm;  %distance of base station from the network
sink.y=0.5*ym;
n = 100; %no of nodesp=0.05; %probibilty of a node to become cluster headEo=0.5; %energy supplied to each node
ch=n/10;
ETX=50*0.000000001; %transmiter energy per node
ERX=50*0.000000001; %reciever energy per mode
Efs=10*0.000000000001; %amplification energy when d is less than d0
Emp=0.0013*0.000000000001; %amplification energy when d is greater than d0
Efs1=Efs/10; % amp energy just for intra cluster communication.
Emp1=Emp/10;
%Data Aggregation Energy
EDA=5*0.000000001;
a=Eo/2; %?rmax=3000; %no of rounds
%temprature range
tempi=50;
tempf=200;
%Thresholod for transmiting data to the cluster head
h=100; %%%%%%Hard Thres%%%%hold H(t)
s=2; %%%%%%Soft thres%%%%hold S(t)
sv=0; %%%%%%previously Sensed value S(v)
do=sqrt(Efs/Emp); %distance between cluster head and base station
do1=sqrt(Efs1/Emp1);
for i=1:1:n
S(i).xd=rand(1,1)*xm; %it will distribute the nodes in 1 dimension in x axis randomly.
XR(i)=S(i).xd; %we store its value in xr
S(i).yd=rand(1,1)*ym; %it will distribute the nodes in 1 dimension in y axis randomly
YR(i)=S(i).yd;
S(i).G=0; % as the no of node that have been cluster head is zero 0
S(i).E=Eo%%*(1+rand*a); %?
%ch.E=x; % initial energy of all cluster heads in network
%initially there are no cluster heads only nodes
S(i).type='N';
figure(11)
plot(S(i).xd,S(i).yd,'bo');
text(S(i).xd+1,S(i).yd-0.5,num2str(i));
title 'Wireless Sensor Network';
xlabel 'X-Coordinate(m)';
ylabel 'Y-Coordinate(m)';
hold on;
end
S(n+1).xd=sink.x; %assume that base station is also a node sp total no of nodes is n and with base station it is n+1
S(n+1).yd=sink.y;
countCHs=0; %the number of Stateflow objects in the current context.
cluster=1; %first cluster is selected
flag_first_dead=0;
flag_teenth_dead=0;
flag_all_dead=0;
dead=0;
first_dead=0;
teenth_dead=0;
all_dead=0;
allive=n;
%counter for bit transmitted to Bases Station and to Cluster Heads
packets_TO_BS=0;
packets_TO_CH=0;
for r=0:1:rmax
cv = tempi + (tempf-tempi).*rand(1,1); %%%%%%Current sensing value C(v)
if(mod(r, round(1/p) )==0) %remainder
for i=1:1:n
S(i).G=0; % it will assign to the nodes that have not been cluster head .
%%S(i).cl=0;
end
end
dead=0;
for i=1:1:n
if (S(i).E<=0)
dead=dead+1;
if (dead==1)
if(flag_first_dead==0)
first_dead=r;
flag_first_dead=1;
end
end
if(dead==0.1*n)
if(flag_teenth_dead==0)
teenth_dead=r;
flag_teenth_dead=1;
end
end
if(dead==n)
if(flag_all_dead==0)
all_dead=r;
flag_all_dead=1;
end
end
end
if S(i).E>0
S(i).type='N';
end
end
STATISTICS.DEAD(r+1)=dead;
STATISTICS.ALLIVE(r+1)=allive-dead;
countCHs=0;
cluster=1;
if S(i).type=='C' && S(i).E>a
for j=1:1:ch
countCHs=countCHs+1;
S(i).type='C';
S(i).G=round(1/p)-1;
C(cluster).xd=S(i).xd;
C(cluster).yd=S(i).yd;
distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 );
C(cluster).distance=distance;
C(cluster).id=i;
X(cluster)=S(i).xd;
Y(cluster)=S(i).yd;
cluster=cluster+1;
distance;


if (distance>do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*(distance*distance*distance*distance ));
end
if (distance<=do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Efs*4000*(distance * distance ));
end
%end

%packets_TO_BS=packets_TO_BS+1;
%PACKETS_TO_BS(r+1)=packets_TO_BS;
% packets_TO_CH=packets_TO_CH+1;
end
else
for i=1:1:n
if(S(i).E>0)
temp_rand=rand;
if ( (S(i).G)<=0)
if(temp_rand<= (p/(1-p*mod(r,round(1/p)))))
countCHs=countCHs+1;
packets_TO_BS=packets_TO_BS+1;
PACKETS_TO_BS(r+1)=packets_TO_BS;
S(i).type='C';
S(i).G=round(1/p)-1;
C(cluster).xd=S(i).xd;
C(cluster).yd=S(i).yd;
distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 );
C(cluster).distance=distance;
C(cluster).id=i;
X(cluster)=S(i).xd;
Y(cluster)=S(i).yd;
cluster=cluster+1;

% if (cv >= h)


distance;
if (distance>do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*(distance*distance*distance*distance ));
end
if (distance<=do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Efs*4000*(distance * distance ));
end
end
end
end
end
end
STATISTICS.COUNTCHS(r+1)=countCHs;
for i=1:1:n
if ( S(i).type=='N' && S(i).E>0 )
if(cluster-1>=1)
min_dis=Inf;
min_dis_cluster=0;
for c=1:1:cluster-1
temp=min(min_dis,sqrt( (S(i).xd-C(c).xd)^2 + (S(i).yd-C(c).yd)^2 ) );
if ( temp= h)
%test = cv-sv;
%if (test >= s)
min_dis;
if (min_dis>do1)
S(i).E=S(i).E- ( ETX*(4000) + Emp1*4000*( min_dis *min_dis * min_dis * min_dis));
end
if (min_dis<=do1)
S(i).E=S(i).E- ( ETX*(4000) + Efs1*4000*( min_dis * min_dis));
end
S(C(min_dis_cluster).id).E =S(C(min_dis_cluster).id).E- ( (ERX + EDA)*4000 );
packets_TO_CH=packets_TO_CH+1;

S(i).min_dis=min_dis;
S(i).min_dis_cluster=min_dis_cluster;
else
min_dis=sqrt( (S(i).xd-S(n+1).xd)^2 + (S(i).yd-S(n+1).yd)^2 );
if (min_dis>do)
S(i).E=S(i).E- ( ETX*(4000) + Emp*4000*( min_dis *min_dis * min_dis * min_dis));
end
if (min_dis<=do)
S(i).E=S(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis));
end
packets_TO_BS=packets_TO_BS+1;

sv=cv;
end
end
end
STATISTICS.PACKETS_TO_CH(r+1)=packets_TO_CH;
STATISTICS.PACKETS_TO_BS(r+1)=packets_TO_BS;
end
first_dead;
teenth_dead;
all_dead;
STATISTICS.DEAD(r+1)
STATISTICS.ALLIVE(r+1)
STATISTICS.PACKETS_TO_CH(r+1)
STATISTICS.PACKETS_TO_BS(r+1)
STATISTICS.COUNTCHS(r+1)
r=0:rmax;
figure (1);
plot(r,STATISTICS.DEAD);
xlabel('Rounds');
ylabel('Dead Nodes');
title('MODLEACH');
figure (2);
plot(r,STATISTICS.PACKETS_TO_BS);
xlabel('Rounds');
ylabel('Packets to BS');
title('MODLEACH');
figure (4);
plot(r,STATISTICS.PACKETS_TO_CH);
xlabel('Rounds');
ylabel('Packets to CH')
title('MODLEACH');
figure (5);
plot(r,STATISTICS.ALLIVE);
xlabel('Rounds');
ylabel('Allive nodes')
title('MODLEACH');

NOTE:-

Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help , Finance Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

> I want to plot two graphs in one figure

Options are

  • subplot
  • tiledlayout with nexttile — preferred, starting in R2019b

subplot(m,n,i) creates an axes in the i^th position of an m-by-n grid.

tiledlayout(m,n) creates an m-by-n grid upon which axes can be added using nexttile.

See documentation links for details.

Benefits to using tiledlayout

The following features are great improvements available in tiledlayout.

  1. Flexible grid sizes (TileArrangment property)
  2. Control spacing (TileSpacing and Padding properties, Community Highlight)
  3. Row-wise or column-wise order of axes (TileIndexing property, Community Highlight)
  4. Global labels such as a title, subtitle, xlabel and ylabel (labels properties)
  5. Global legends, starting in R2020b (legend layout property, documentation example, more demos)
  6. Global colorbars, starting in R2020b (colorbar layout property, documentation example, demo)
  7. Specify the span of an axes within the grid using nexttile(span)

Demo

tcl = tiledlayout(2,3,'TileSpacing','compact');
nexttile
plot(magic(5))
axis tight

SEE COMPLETE ANSWER CLICK THE LINK

https://www.matlabsolutions.com/resources/how-to-plot-multiple-graphs-in-one-figure-.php

https://matlabarticlesworld.blogspot.com/2024/08/how-to-plot-multiple-graphs-in-one.html

--

--

Technical Source
Technical Source

Written by Technical Source

Simple! That is me, a simple person. I am passionate about knowledge and reading. That’s why I have decided to write and share a bit of my life and thoughts to.

No responses yet