how to predict from a trained neural network ?
Hello I am trying to use neural network to make some prediction based on my input and target data. I have read all related tutorial in Matlab and also looked at the matlab examples. I kinda learned how to develop a network but I dont know how to use this train network to make some prediction ? is there any code that im missing ? does anyone have a sample script that can be shared here?
that’s what I have, for example : x=[1 2 3;4 5 3] t=[0.5 0.6 0.7] , net=feedforwardnet(10) , net=train(net,x,t) , perf=perform(net,y,t)
how can I predict the output for a new set of x (xprime=[4 2 3;4 7 8]) based on this trained network? thanks
ANSWER
Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.
1. Your code should yield an error because you have not defined y.
here are two ways to define output y, error e and normalized mean square error NMSE (= 1-Rsquare)
1. [ net tr ] = train(net,x,t);
y = net(x);
e = t-y; 2. [ net tr y e ] = train(net,x,t); % My favorite
then, in general,
NMSE = mse(e)/mean(var(t',1))
or for 1-dimensional outputs
NMSE = mse(e)/var(t,1)
SEE COMPLETE ANSWER CLICK THE LINK