# Neural Network Time Series Prediction — changing the inital state

Hello, I’m working currently with prediction-problems for dynamical systems, e.g. single pendulum with friction. At the moment I’m testing neural networks for time series predictions, although my knowledge is very basic. My understanding of neural networks in light of dynamical systems is that they are working like a flexible state-space-model. Training the neural network with some testdata should result in an accurate state-space-model, which can be used for predictions, am I right?

Lets say, I split my testdata into two sections. The first one will be used for training purpose and the second one for validation (in reference to my attached file). The prediction gives good results on the validation data, going forward, we are using the same net, but vary the inital state, here the inital angle of the pendulum. Is it even possible to vary the inital state? Does the net just predict on a one-off basis of the training data?

I’m referring to ANN Examples ,especially example 9 (Prediction of chaotic time series with NAR neural network).

Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

NEURAL NETWORK SUBSET TERMINOLOGY(comp.ai.neural-nets):

`data        = training + validation + test design      = training + validation nondesign   = test nontraining = validation + test`

TRAINING:

`1. Given input matrix, target matrix and training parameters, estimate the weights and biases. 2. Performance estimate is biased because the same data is used for training and performance estimation.`

VALIDATION:

Used with multiple designs to

`1. Choose nonweight parameters (e.g., learning rate, momentum constant, stopping epoch...)  2. Rank multiple designs 3. Performance estimates slightly biased because the same data is used to choose parameters`

TEST:

--

--

--

## More from Technical Source

Simple! That is me, a simple person. I am passionate about knowledge and reading. That’s why I have decided to write and share a bit of my life and thoughts to.

Love podcasts or audiobooks? Learn on the go with our new app.

## Technical Source

Simple! That is me, a simple person. I am passionate about knowledge and reading. That’s why I have decided to write and share a bit of my life and thoughts to.