Why is my neural network overfitting?

Technical Source
2 min readJul 30, 2021

--

Hello! I’m trying to make a forecast program using neural networks. The training function I’m using is the Bayesian Regularization.

Results are pretty good, but when I see the performance, I notice that the training error has decreased but the Test values didn’t.

In fact, when I test the network with additional new values, the results are pretty awful. I believe that this was because the network became overfitted.

My question is,how can I prevent the ‘trainbr’ function from overfitting? Every time I train the network the error of the values assigned for testing does not decrease.

inputs = tonndata(x,false,false);
targets = tonndata(t,false,false);
net = feedforwardnet([15,13],'trainbr');net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};
net.divideFcn = 'dividerand'; net.divideMode = 'time';
net.divideParam.trainRatio = 85/100;
net.divideParam.valRatio = 0/100;
net.divideParam.testRatio = 15/100;
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.transferFcn = 'logsig';
net.performFcn = 'mse';net = train(net,inputs,targets);
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

ANSWER

Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

The best approach for regression is to start with FITNET using as many defaults as possible. The default I-H-O node topology contains Nw = (I+1)*H+(H+1)*O unknown weights. Ntrn training examples yields Ntrneq = Ntrn*O training equations with Ntrndof = Ntrneq-Nw training degrees of freedom. The average variance in the training target examples is MSEtrn00 = mean(var(target’)). Obtaining a mean-square-error lower than MSEtrngoal = 0.01*Ntrndof*MSEtrn00a/Ntrneq for Ntrndof > 0 results in a normalized DOF adjusted MSE of NMSEtrna <= 0.01 and the corresponding adjusted training Rsquared R2trna = 1-NMSEtrna >= 0.99. That is interpreted as the successful modeling of at least 99% of the variation in the target.

The training objective is to try and minimize H with the constraint R2trna >=0.99. This is usually achieved by trial and error over a double for loop with the outer loop of hidden node candidate values h = Hmin:dH:Hmax and an inner loop of i = 1:Ntrials random weight initializations. I have posted many, many examples. Search NEWSGROUP and ANSWERS using

SEE COMPLETE ANSWER CLICK THE LINK

--

--

Technical Source
Technical Source

Written by Technical Source

Simple! That is me, a simple person. I am passionate about knowledge and reading. That’s why I have decided to write and share a bit of my life and thoughts to.

No responses yet